The Inverse Laplace Transform and Analytic Pseudo-Differential Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

A Generalization of the Pseudo-laplace Transform

This paper gives a generalization of the Pseudo-Laplace transform. In the special cases of semirings, the pseudo-exchange formula is proved. Also, for these semirings the forms of the Pseudo-Laplace transform and inverse operator are given. The results can be applied in dynamical programming for finding the maximum and minimum of the utility functions. AMS Mathematics Subject Classification (19...

متن کامل

the analytical solutions for volterra integro-differential equations within local fractional operators by yang-laplace transform

in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...

متن کامل

Automorphic Pseudo-differential Operators

For recent developments of this work in the classical direction, especially to generalizing to modular groups acting on higher dimensional spaces, see papers of Min Ho Lee: http://www.math.uni.edu/ lee/pub.html. He has, for example, developed the Hilbert modular case. Also, Olav Richter’s work on Rankin-Cohen brackets: http://www.math.unt.edu/ richter/. Work of Conley on 1/2-integral weight: ht...

متن کامل

Stability analysis of delay-differential equations by the method of steps and inverse Laplace transform

It is demonstrated that the method of steps for linear delay-differential equation together with the inverse Laplace transform can be used to find a converging sequence of polynomial approximants to the transcendental function determining stability of the delay equation. Numerical stability charts are shown to illustrate convergence. This approach can serve as a basis for an efficient numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1998

ISSN: 0022-247X

DOI: 10.1006/jmaa.1998.6083